

Problem Statement : Why use Azure SQL Single database?

Many enterprises or companies move their data pipelines into the cloud, they do it for the
advantages of distributed storage and computing, such as scaling, cost-efficiency over
outsourcing in-house IT infrastructure, and maximizing data availability. And many actually
aren’t aware of how simple it is to move into such a solution. All you need really is the Azure
SQL Database component.

Solution

A single database can be moved into or out of an elastic pool for resource sharing. For many businesses and
applications, being able to create single databases and dial performance up or down on demand is enough, especially if
usage patterns are relatively predictable. But if you have unpredictable usage patterns, it can make it hard to manage
costs and your business model. Elastic pools are designed to solve this problem. The concept is simple. You allocate
performance resources to a pool rather than an individual database and pay for the collective performance resources of
the pool rather than for single database performance.

The single database resource type creates a database in Azure SQL Database with its own set of resources
and is managed via a server. With a single database, each database is isolated, using a dedicated database
engine. Each has its own service tier within the DTU-based purchasing model or vCore-based purchasing
model and a compute size defining the resources allocated to the database engine.

Single database is a deployment model for Azure SQL Database. The other is elastic pools.

Now, let us see the steps to create a Single database in Azure SQL Database.

https://learn.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-overview?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/database/logical-servers?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/database/service-tiers-dtu?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/database/service-tiers-vcore?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/database/service-tiers-vcore?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-overview?view=azuresql

Implementation

Pre- requisites or conditions:

a. A live or ongoing Azure subscription. If you do not have a subscription, you can go for a
free account.

b. The rearmost interpretation of Azure PowerShell or Azure CLI.

Steps to create a Database on Azure portal:

1. To create a single database in the Azure gate:

• Go to Select SQL Deployment option runner.

• Under SQL databases, select Single database type under resource type option,
finally click on create.

2. We need to fill in a few details under the tab of the Create SQL Database, Enter the Project
details, and the desired Azure Subscription.

3. In the Resource group, click on Create New, enter the name for that group let’s say
‘myResourceGroup’ and click on OK.

4. For the name of Database you can enter any name let’s enter ‘mySampleDatabase’.

5. Coming to the Server, select produce new tab, fill the new details form as follows:

● Under name Enter mysql server, and add some characters for oneness.
● The Server name would be unique across all the Azure server, so once we enter the

name portal will show us whether the name is available or it is in use already.
● Location, select from the dropdown list.

6. Authentication system, for that Select Use SQL authentication.

7. Server admin login, enter the azure user example - azureuser1. Enter a word, and Confirm
the word field. Click on OK. Skip the “Want to use SQL elastic pool”, set to NO.

8. Configure Database, under Compute + Storage.

9. After that we use a serverless database, so let the Service tier be set to General Purpose and
set Compute tier to Serverless and select Apply.

10. In Provisory storehouse redundancy, select a redundancy option for the storehouse
account where your backups will be saved.

11. Now, select Next Networking at the bottom of the page On the Networking tab, select
Public endpoint, for Connectivity system.

12. Set, “Add current customer IP address” to YES for Firewall rules. Now leave Allow
Azure services and coffers to pierce this server set to No.

13. Choose the connection policy in Connection policy and leave the minimal TLS
interpretation at the dereliction.

14. Select Next Security at the bottom of the runner.You can choose to start a free trial of
Microsoft Defender for SQL, as well as configure Ledger, Managed individualities and
Transparent data encryption(TDE) if you ask on the Security runner.

15. Select Coming fresh settings at the end of the runner.

16. Configure additional settings, in the Data source section, Select use existing data and
select the sample. This makes an AdventureWorksLT sample database hereafter, there are
some tables and data for querying and experimenting with, as opposed to an empty blank
database. Also, you can configure a conservation window and database collation.

17. Select Review produce at the bottom of the runner, select produce on the Review produce
runner, after reviewing.

Here, we created a Database on the Azure portal. Let's move to querying the database.

Once we have our Database up and running, we can make queries on the data using the Query
editor(preview) on Azure Portal, through this we shall be able to connect to teh database and
fetch the results of Queries.

Query the database:

1. Hunt for and select SQL databases in the portal, and select your database from the list.

2. Select the Query editor (exercise) in the left menu on the runner for your database.

3. Enter your server admin login information and also select OK.

4. Enter the following query in the Query editor pane.

SQL Query:

SELECT TOP 25pc.Name as CategoryName,p.name as ProductName
FROM SalesLT.ProductCategory pc
JOIN SalesLT.Product p
ON pc.productcategoryid = p.productcategoryid;

5. Select Run, and also review the query results in the Results pane.

6. Close the Query editor runner, and Select OK when asked to delete the unsaved edit.

AZURE CLI METHOD

: subscription="<subscriptionId>" # add subscription here

az account set -s $subscription # ...or use 'az login'

Setting parameters value

Variable block

let "randomIdentifier=$RANDOM*$RANDOM"

location="East US"

resourceGroup="msdocs-azuresql-rg-$randomIdentifier"

tag="create-and-configure-database"

server="msdocs-azuresql-server-$randomIdentifier"

database="msdocsazuresqldb$randomIdentifier"

login="azureuser"

password="Pa$$w0rD-$randomIdentifier"

Specify appropriate IP address values for your environment

to limit access to the SQL Database server

startIp=0.0.0.0

endIp=0.0.0.0

echo "Using resource group $resourceGroup with login: $login, password: $password..."

How to Clean up Resources used?

Keep the resource group,server and single database to go on to the coming way, and

learn how to connect and query your database with different styles.

When you are done using these resources, you can choose to delete the resource

group you created. This will also delete the server and single database within it.

How to Clean up Resources used?

Steps :

1. In the portal, hunt for and elect Resource groups, and also elect

“myResourceGroup” from the list.

2. On the resource group runner, elect cancel resource group.

3. Under Type the resource group name, enter myResourceGroup, and also select

cancel.

In this way you can create the Database and query it, we also saw how we can clean up

resources and delete the server and single database within it. We saw all these on Azure

Portal, we can also do it using Azure CLI and Powershell. We can connect and query the

database using other tools and languages as well like SQL Server Management Studio ,

Azure Data studio.

Knowledge Sharing for Best Practices:

Migrating to a single database with minimal downtime
These quickstarts enable you to quickly create or import your database to Azure using a .bacpac file. However, .bacpac and .dacpac files
are designed to quickly move databases across different versions of SQL Server and within Azure SQL, or to implement continuous
integration in your DevOps pipeline. However, this method is not designed for migration of your production databases with minimal
downtime, because you would need to stop adding new data, wait for the export of the source database to a .bacpac file to complete,
and then wait for the import into Azure SQL Database to complete. All of this waiting results in downtime of your application,
especially for large databases. To move your production database, you need a better way to migrate that guarantees minimal
downtime of migration. For this, use the Data Migration Service (DMS) to migrate your database with the minimal downtime. DMS
accomplishes this by incrementally pushing the changes made in your source database to the single database being restored. This
way, you can quickly switch your application from source to target database with the minimal downtime.

Challenges :

Memory bottlenecks: Memory bottlenecks can lead to delay in application response, overall

system slowness, or even application crashes.

CPU bottlenecks: Insufficient hardware usage, sudden CPU spikes, as well as complex and time-

consuming queries are some of the reasons for CPU bottlenecks.

Given the complexities involved in tracking the performance of Azure SQL Database, you might

need a little help.

Under some circumstances, you may need to shrink a database to reclaim unused space.

Benefits

Where do I start, really. Costs? Of course. You pay only for u used per second. Scale for

demand, up or down, pause and pay only for storage during inactive periods, and

seamlessly resume when workloads come back. , each database is isolated, using a

dedicated database engine This is especially brilliant for databases with intermittent,

unpredictable usage patterns interspersed with periods of inactivity, and lower average

https://learn.microsoft.com/en-us/azure/dms/tutorial-sql-server-to-azure-sql?toc=/azure/sql-database/toc.json

compute utilization over time. And last, but not the least, New single databases without

usage history where compute sizing is difficult or not possible to estimate prior to

deployment in SQL Database.

	Migrating to a single database with minimal downtime

